컬쥐네 다락방

Kubernetes | 쿠버네티스란? 본문

클라우드/K8S

Kubernetes | 쿠버네티스란?

코딩하는 갱얼쥐 2022. 5. 17. 04:06

쿠버네티스란?

쿠버네티스는 컨테이너화된 애플리케이션의 배포, 확장 관리등을 자동화하는 오픈소스 시스템.
구글이 내부에서 사용하던 프로그램을 기반으로 만들었고, 이를 CNCF에 기부하여 오픈 소스 프로젝트가 되었다.
서버리스, CI/CD 등 여러 기능들이 쿠버네티스 위에서 동작하게 된다.
k8s라는 표기는 'k'와 's'와 그 사이에 있는 8글자를 나타내는 약식 표기이다.

개발 환경의 변화

  • 전통적인 배포 시대
    초기 조직은 애플리케이션을 물리 서버에서 실행했다. 한 물리 서버에서 여러 애플리케이션에 리소스 한계를 정의할 방법이 없었고 리소스 할당의 문제가 발생하기 시작했다. 이를 해결하기 위해 서로 다른 물리 서버에서 각 애플리케이션을 실행하는 것이 한 방법이었지만 이는 리로스가 충분히 활용되지 못한다는 점에서 물리 서버를 유지하기 위해 조직에게 많은 비용이 요구됐다.
  • 가상화된 배포 시대
    그 해결책으로 가상화가 도입되었다. 이는 단일 물리 서버의 CPU에서 여러 가상 시스템(VM)을 실행할 수 있게 했다. 가상화를 통해 애플리케이션을 격리하고 보안성을 제공할 수 있었다. 물리 서버에서보다 리소스를 효율적으로 활용할 수 있었고 하드웨어 비용일 절감할 수 있었다. 각 VM은 가상화된 하드웨어 상에서 자체 운영체제를 포함한 모든 구성 요소를 실행하는 하나의 완전한 머신이다.
  • 컨테이너 개발 시대
    컨테이너는 VM과 유사하지만 격리 속성을 완화하여 애플리케이션 간 OS를 공유한다. 그러므로 컨테이너는 가볍다고 여겨진다. 기본 인프라와의 종속성을 끊었기 때문에, 클라우드나 OS 배포본에 모두 이식할 수 있다.
    컨테이너는 다음과 같은 추가적인 혜택이 존재한다.
  1. 기민한 애플리케이션 생성과 배포 : VM 이미지를 사용하는 것보다 이미지 생성이 보다 쉽고 효율적이다.
  2. 지속적인 개발,통합 및 배포 : 안정적이고 주기적으로 이미지를 빌드해서 배포할 수 있고 효율적으로 롤백이 가능하다.
  3. 개발과 운영의 관심사 분리 : 배포 시점이 아닌 빌드/릴리스 시점에 애플리케이션 컨테이너 이미지를 만들기 때문에 애플리케이션이 인프라에서 분리된다.
  4. 가시성 : OS 수준의 정보에서 머무르지않고 애플리케이션의 상태와 시그널을 볼 수 있다.
    이 외에도 개발,테스팅 및 운영 환경의 일관성, 클라우드 및 OS 배포판 간 이식성, 리소스 격리등의 이점이 있다.

쿠버네티스의 기능

  • 서비스 디스커버리와 로드 밸런싱: DNS 이름을 사용하거나 자체 IP 주소를 사용하여 컨테이너를 노출할 수 있으며 네트워크 트래픽을 로드밸런싱하여 배포가 안정적이다.
  • 스토리지 오케스트레이션 : 쿠버네티스를 사용하면 로컬 저장소, 공용 클라우드 공급자 등과 같이 원하는 저장소 시스템을 자동으로 탑재 할 수 있다.
  • 자동화된 롤아웃과 롤백 : 쿠버네티스를 사용하여 배포된 컨테이너의 원하는 상태를 서술할 수 있으며 현재 상태를 원하는 상태로 설정한 속도에 따라 변경할 수 있다.
  • 자동화된 빈 패킹(bin packing) : 컨테이너화된 작업을 실행하는데 사용할 수 있는 쿠버네티스 클러스터 노드를 제공한다. 각 컨테이너가 필요로 하는 CPU와 메모리(RAM)를 쿠버네티스에게 지시한다.
  • 자동화된 복구 (self-healing) : 쿠버네티스는 실패한 컨테이너를 다시 시작하고, 컨테이너를 교체하며, '사용자 정의 상태 검사'에 응답하지 않는 컨테이너를 죽이고, 서비스 준비가 끝날 때까지 그러한 과정을 클라이언트에 보여주지 않는다.
  • 시크릿과 구성 관리 : 쿠버네티스를 사용하면 암호, OAuth 토큰 및 SSH 키와 같은 중요한 정보를 저장하고 관리 할 수 있다. 컨테이너 이미지를 재구성하지 않고 스택 구성에 시크릿을 노출하지 않고도 시크릿 및 애플리케이션 구성을 배포 및 업데이트 할 수 있다.

쿠버네티스가 아닌 것

쿠버네티스는 전통적인, 모든 것이 포함된 Platform as a Service(PaaS)가 아니다. 쿠버네티스는 하드웨어 수준보다는 컨테이너 수준에서 운영되기 때문에, PaaS가 일반적으로 제공하는 배포, 스케일링, 로드 밸런싱과 같은 기능을 제공하며, 사용자가 로깅, 모니터링 및 알림 솔루션을 통합할 수 있다. 하지만, 쿠버네티스는 모놀리식(monolithic)이 아니어서, 이런 기본 솔루션이 선택적이며 추가나 제거가 용이하다. 쿠버네티스는 개발자 플랫폼을 만드는 구성 요소를 제공하지만, 필요한 경우 사용자의 선택권과 유연성을 지켜준다.

  • 지원하는 애플리케이션의 유형을 제약하지 않는다. 쿠버네티스는 상태 유지가 필요 없는(stateless) 워크로드, 상태 유지가 필요한(stateful) 워크로드, 데이터 처리를 위한 워크로드를 포함해서 극단적으로 다양한 워크로드를 지원하는 것을 목표로 한다.
  • 소스 코드를 배포하지 않으며 애플리케이션을 빌드하지 않는다. 지속적인 통합과 전달과 배포, 곧 CI/CD 워크플로우는 조직 문화와 취향에 따를 뿐만 아니라 기술적인 요구사항으로 결정된다
  • 애플리케이션 레벨의 서비스를 제공하지 않는다. 애플리케이션 레벨의 서비스에는 미들웨어(예, 메시지 버스), 데이터 처리 프레임워크(예, Spark), 데이터베이스(예, MySQL), 캐시 또는 클러스터 스토리지 시스템(예, Ceph) 등이 있다.
  • 로깅, 모니터링 또는 경보 솔루션을 포함하지 않는다. 개념 증명을 위한 일부 통합이나, 메트릭을 수집하고 노출하는 메커니즘을 제공한다.
  • 기본 설정 언어/시스템(예, Jsonnet)을 제공하거나 요구하지 않는다. 선언적 명세의 임의적인 형식을 목적으로 하는 선언적 API를 제공한다.
  • 포괄적인 머신 설정, 유지보수, 관리, 자동 복구 시스템을 제공하거나 채택하지 않는다.
  • 쿠버네티스는 단순한 오케스트레이션 시스템이 아니다. 사실, 쿠버네티스는 오케스트레이션의 필요성을 없애준다. 오케스트레이션의 기술적인 정의는 A를 먼저 한 다음, B를 하고, C를 하는 것과 같이 정의된 워크플로우를 수행하는 것이다. 반면에, 쿠버네티스는 독립적이고 조합 가능한 제어 프로세스들로 구성되어 있다. 이 프로세스는 지속적으로 현재 상태를 입력받은 의도한 상태로 나아가도록 한다.

쿠버네티스의 구성

  • Controle Plan
    컨트롤 플레인 컴포넌트는 클러스터에 관한 전반적인 결정(예를 들어, 스케줄링)을 수행하고 클러스터 이벤트(예를 들어, 디플로이먼트의 replicas 필드에 대한 요구 조건이 충족되지 않을 경우 새로운 파드를 구동시키는 것)를 감지하고 반응한다.

컨트롤 플레인 컴포넌트는 클러스터 내 어떠한 머신에서든지 동작할 수 있다. 그러나 간결성을 위하여, 구성 스크립트는 보통 동일 머신 상에 모든 컨트롤 플레인 컴포넌트를 구동시키고, 사용자 컨테이너는 해당 머신 상에 동작시키지 않는다.

  • kube-apiserver
    API 서버는 쿠버네티스 API를 노출하는 쿠버네티스 컨트롤 플레인 컴포넌트이다. API 서버는 쿠버네티스 컨트롤 플레인의 프론트 엔드이다.
    쿠버네티스 API 서버의 주요 구현은 kube-apiserver 이다. kube-apiserver는 수평으로 확장되도록 디자인되었다. 즉, 더 많은 인스턴스를 배포해서 확장할 수 있다. 여러 kube-apiserver 인스턴스를 실행하고, 인스턴스간의 트래픽을 균형있게 조절할 수 있다.
  • etcd
    모든 클러스터 데이터를 담는 쿠버네티스 뒷단의 저장소로 사용되는 일관성·고가용성 키-값 저장소.
    쿠버네티스 클러스터에서 etcd를 뒷단의 저장소로 사용한다면, 이 데이터를 백업하는 계획은 필수이다.
  • kube-scheduler
    노드가 배정되지 않은 새로 생성된 파드 를 감지하고, 실행할 노드를 선택하는 컨트롤 플레인 컴포넌트.
    스케줄링 결정을 위해서 고려되는 요소는 리소스에 대한 개별 및 총체적 요구 사항, 하드웨어/소프트웨어/정책적 제약, 어피니티(affinity) 및 안티-어피니티(anti-affinity) 명세, 데이터 지역성, 워크로드-간 간섭, 데드라인을 포함한다.
  • kube-controller-manager
    컨트롤러 프로세스를 실행하는 컨트롤 플레인 컴포넌트.
    논리적으로, 각 컨트롤러는 분리된 프로세스이지만, 복잡성을 낮추기 위해 모두 단일 바이너리로 컴파일되고 단일 프로세스 내에서 실행된다.
    노드 컨트롤러, 래플리케이션 컨트롤러, 앤드포인트 컨트롤러, 서비스 어카운트& 토큰 컨트롤러를 포함한다.
  • cloud-controller-manager
    클라우드별 컨트롤 로직을 포함하는 쿠버네티스 컨트롤 플레인 컴포넌트이다. 클라우드 컨트롤러 매니저를 통해 클러스터를 클라우드 공급자의 API에 연결하고, 해당 클라우드 플랫폼과 상호 작용하는 컴포넌트와 클러스터와만 상호 작용하는 컴포넌트를 구분할 수 있게 해 준다.
    cloud-controller-manager는 클라우드 제공자 전용 컨트롤러만 실행한다. 자신의 사내 또는 PC 내부의 학습 환경에서 쿠버네티스를 실행 중인 경우 클러스터에는 클라우드 컨트롤러 매니저가 없다.
  • 노트 컴포넌트
    노드 컴포넌트는 동작 중인 파드를 유지시키고 쿠버네티스 런타임 환경을 제공하며, 모든 노드 상에서 동작한다.
  • kubelet
    클러스터의 각 노드에서 실행되는 에이전트. Kubelet은 파드에서 컨테이너가 확실하게 동작하도록 관리한다.
    Kubelet은 다양한 메커니즘을 통해 제공된 파드 스펙(PodSpec)의 집합을 받아서 컨테이너가 해당 파드 스펙에 따라 건강하게 동작하는 것을 확실히 한다. Kubelet은 쿠버네티스를 통해 생성되지 않는 컨테이너는 관리하지 않는다.
  • kube-proxy
    ube-proxy는 클러스터의 각 노드에서 실행되는 네트워크 프록시로, 쿠버네티스의 서비스 개념의 구현부이다.
    kube-proxy는 노드의 네트워크 규칙을 유지 관리한다. 이 네트워크 규칙이 내부 네트워크 세션이나 클러스터 바깥에서 파드로 네트워크 통신을 할 수 있도록 해준다.

kube-proxy는 운영 체제에 가용한 패킷 필터링 계층이 있는 경우, 이를 사용한다. 그렇지 않으면, kube-proxy는 트래픽 자체를 포워드(forward)한다.

Comments